Volterra series and permutation groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volterra Series and Permutation Groups

shuffle product of the permutations u E E k and v' E E k, we mean the following element from ~+~, /,, (i), i < k , vmv'=: Z o'o(~,| where (v~v') ( i ) = ~ . v , ( i _ k ) + l e ' i ' > k . a(~sk+n'cn} Since the permutations form an additive basis of the space ~ , the shuffle multiplication is uniquely extended "by linearity" to any pair of elements from ~ and defines in $ = ~0$n a structure of ...

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Permutation Groups

The theory of permutation groups is essentially the theory of symmetry for mathematical and physical systems. It therefore has major impact in diverse areas of mathematics. Twentieth-century permutation group theory focused on the theory of finite primitive permutation groups, and this theory continues to become deeper and more powerful as applications of the finite simple group classification,...

متن کامل

Partitions and Permutation Groups

We show that non-trivial extremely amenable topological groups are essentially the same thing as permutation models of the Boolean prime ideal theorem that do not satisfy the axiom of choice. Both are described in terms of partition properties of group actions.

متن کامل

Computing Chief Series, Composition Series and Socles in Large Permutation Groups

In this paper, we describe the theory and implementation of algorithms for computing chief series, composition series and socles in large permutation groups. The theory is valid for permutation degrees up to 10 000 000. Most parts of the algorithms have been implemented within the Magma Computational Algebra System (Bosma and Cannon, 1993; Bosma et al., 1994; Bosma et al., 1997; Cannon and Play...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 1994

ISSN: 1072-3374,1573-8795

DOI: 10.1007/bf02111557